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GROWTH DUE TO BUOYANCY OF WEAK HOMOGENEOUS TURBULENCE WITH SHEAR 

by Rober t  G. De iss le r  

Lewis Research C e n t e r  

SUMMARY 

An analysis is made to determine how the energy in a weak homogeneous turbulence 
with buoyancy and shear  changes with time. It is shown that, although the turbulence 
ultimately decays when buoyancy is absent, the presence of buoyancy counteracts the 
decay, and the turbulent energy grows at large t imes.  

INTRODUCTION 

Studies of weak homogeneous (grid generated) turbulence with uniform mean velocity 
gradient are given in references 1 and 2. In the resu l t s  obtained there,  the turbulent 
energy always decayed with t ime. The energy produced by the mean velocity gradient 
was at all t imes  less than that dissipated. In reference 3, where the initial condition 
was modified to give a finite initial turbulent energy, the energy sometimes increased 
for a while, but it still ultimately decayed. This  behavior was attributed t o  the fact that, 
while the total energy was  increasing, energy was being drained out of the component of 
the turbulence in the direction of the velocity gradient by the pressure-velocity correla
tions. Since there  was no turbulence production in that component, it quickly decayed, 
with the result  that the turbulent shear  stress, and consequently the turbulence produc
tion in all the components, ultimately decreased. 

Thus, the key to  obtaining a nondecaying turbulent shear  flow appears to lie in 
keeping the energy from being drained out of the turbulence component in the direction 
of the mean velocity gradient. In strong turbulence, the distribution of energy among 
the directional components is evidently accomplished by the pressure-velocity correla
tions, but in weak turbulence, those correlations generally tend to  make the turbulence 
more  anisotropic (ref. 1). If, however, we superimpose on the shea r  flow destabilizing 
buoyancy forces  in the direction of the mean velocity gradient, it may be possible t o  



obtain a nondecaying solution, even for weak turbulence. Those buoyancy forces  should 
tend to prevent the turbulence component in the direction of the mean velocity gradient 
from decaying. 

Some of the effects of combined buoyancy and shear  on weak homogeneous turbulence 
were  investigated in reference 4. However, the question of whether o r  not the turbulence 
decays was not considered. It is with that aspect of the problem that we will be con
ce r  ned her  e. 

ANALYSIS 

The basic equations for the present study can be writ ten as (ref. 4) 

and 

-
2

a7-a7 + Uk-+ aT uk-+---=a(Tuk) a m k  cy a 7  
(3) 

at  axk axk &k axk &k 

where the subscripts (except e) can take on the values 1, 2, o r  3, and a repeated sub
scr ipt  in a t e rm signifies a summation. The  quantity ui is a fluctuating velocity com
ponent, t is the t ime, Ui is a mean velocity component, p is the density, p is the in
stantaneous pressure,  pe is the equilibrium pressure,  xi  is a space coordinate, v is 
the kinematic viscosity, P = -(l/p)(ap/aT) 

P
, gi is a component of the body force per t 

unit mass ,  T is the temperature fluctuation, T is the mean temperature,  a is the 
thermal  diffusivity, and overbars designate averaged values. (Symbols are defined in c' 

the appendix. ) 
In obtaining equations (1) to  (3), the instantaneous velocities and temperatures in 

the incompressible Navier-Stokes and energy equations are broken into mean and fluc
tuating components. For  the last  t e rm in equation (1) (buoyancy term),  the density is 
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assumed to  depend effectively only on temperature and is not far removed from its equi
librium value (value it would have for no heat t ransfer  or turbulence). The equation for 
the pressure  (eq. (2)) is obtained by taking the divergence of the Navier-Stokes equation 
and applying continuity. 

Equations involving correlations between fluctuating quantities at two points P and 
P’ can be constructed from equations (1)to (3). Such equations have been obtained for 
homogeneous turbulence with uniform velocity and temperature gradients in reference 4. 

7 They can be converted t o  spectral  form by taking their  Fourier transforms. We con
sider  the case  where the velocity and temperature gradients a r e  in the x3-direction 

i (vertical) and the body force (gravity) is in the -x 3 -direction. Let g = -g 3’ a = dUl/dx3, 
and b = dT/dx3, and assume that the turbulence is weak enough to  neglect t e rms  con
taining t r iple  correlations. The correlation equations then become in spectral  form 

acp.. a‘p ..
3aK1 1J= -a(6ilqj3 + 6 1 3.‘p.13 + 2a -

at aK3 K(2 K 
2 

+ &yj f i 3  -F)- 2 V K  2‘pij (4) 

where q.. yi, and 6 a r e  given by4’ 

J-co 
(9) 
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The quantity is the wave number vector and d r =  dK1 dK2 dK3' The magnitude of 
has the dimension l/length and can be considered to  be the reciprocal of a wavelength o r  
eddy size.  The unprimed and primed quantities in the bar red  products refer, respec
tively, to  values a t  points P and P' separated by the vector r. The quantity 6 . .  is 

1J

the Kronecker delta. 

Equations (4), (5), and (6 )  give contributions -of various processes to the rate of 
-

change of spectral  components of "i"j, TU i' and T', respectively. The second t e rm in 
each equation is a t ransfer  t e rm which t ransfers  activity into o r  out of a spectral  com- r 
ponent by the stretching o r  compressing of turbulent vortex filaments by the mean veloc
ity gradient, as discussed in reference 1. The t e r m s  with K~ in the denominator a r e  I 
spectral  components of pressure-velocity o r  pressure-temperature correlations and 
t ransfer  activity between directional components (ref. 1). The t e r m s  proportional to  
/3g and 6 .13 (or 6 .13) a r e  buoyancy t e r m s  which augment o r  diminish the activity in a 
spectral  component by buoyant action. The last t e r m s  in the equations a r e  dissipation 
t e rms ,  which dissipate activity by viscous or  by conduction effects. The remaining 
t e r m s  in the equations produce activity by velocity o r  temperature gradient effects. 

For solving equations (4)to (6), the turbulence is assumed to be initially isotropic 
at t = t 0' That condition is satisfied by 

where Jo is a constant that depends on initial conditions and K~ is an initial wave 
number that is characterist ic of the turbulence. Equation (10) differs from the initial 
condition in references 1, 2,  and 4 (but not from that in 3) by the exponential factor, 
which was se t  equal to 1 in those references ( K ~= m). For the initial conditions on 6 
and yi (at t = to), it is assumed that 

6 0  = ti)*= 0 

I 
That is, the turbulence producer (grid) is assumed to be unheated, s o  that the tempera
tu re  fluctuations a r e  produced by the interactions of the mean temperature gradient with 

[ 

the turbulence. 
A method of solving the preceding set  of partial differential equations (eqs. (4) 

to  (6)) is described in reference 4. Those equations are converted to  ordinary differ
ential equations, and spherical  coordinates a r e  introduced by using the transformations 
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K~ = K cos cp sin 6 ,  K~ = K sin cp sin 8 ,  and K~ = K cos 6 .  The resulting set of equations 
is integrated numerically by machine computation. Directionally integrated spectrum 
functions can then be obtained from 

'i j  
71 

[ri'A =sc 

These spectrum functions can be integrated over all wave numbers to  give the following 
single-point correlations: 

-n 
~U.U. 
1 1  


T Ui 
-

2
7 A 

Computed correlations and spectra  for the case  where the buoyancy forces a r e  desta
bilizing (negative vertical  temperature gradients) will be  considered in the next section. 
The resul ts  given there  a r e  for a gas with a Prandtl number of 0.7.  

RESULTS AND DISCUSSION 

The effect of destabilizing buoyancy forces  on weak homogeneous shear-flow turbu
lence in a gas is illustrated in figure 1. The superscr ipt  (a) on EX-(a), t(a), and K~(a) 

1 j
indicates that those parameters  have been made dimensionless by using quantities re
lated to  the shear  (in contrast to those related to the buoyancy, which will be used later). 
Curves are shown for two values of Richardson number and of the initial wave number 
par am ete r  . 

The curves indicate that for a Richardson number of 0 (no buoyancy effects) all com
ponents of the turbulent energy decrease with time. The turbulent shear  stress -u1u3 
also decreases  with t ime, except near the initial time. (At t(a) = 0 the turbulence is 
isotropic and u1u3 is 0 . )  
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15- (a) Dimensionless i n i t i a l  wave number, 

Dimensionless time, t(a) = (dUl/dx3)(t - to)  

( b )  Dimensionless in i t ia l  wave number.  

Figure 1.. - Effect o f  destabilizing buoyancy o n  
variat ion wi th  t ime of weak turbulence in un i fo rm 
un i fo rm shear flow. Prandtl  number. 0.7. 

The decay of the components of turbulent energy for no buoyancy effects evidently 
occurs mainly because there  is no production t e rm in the equation for UU (component3 3  
in the direction of the mean velocity gradient). This  can be seen by letting i = j = 3 in 
equation (4), in which case  the production t e rm (first t e rm on the right side) drops out. 
In addition,-the pressure-velocity correlation t e rms  in equation (4) tend to drain energy 
out of the u2-component when the turbulence is weak, as discussed in reference 1. A s3
a resul t  the ug-component decays rapidly compared with the other components, which 

-have energy fed into them by the mean velocity gradient o r  by the pressure-velocity 
correlations (see fig. 1). When ug decays, the shear  component u3u1 must also de
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cay. There  is then no mechanism for maintaining the turbulence since that maintenance 
apparently takes place as a result  of work done on the turbulent shear  s t r e s s  by the 
velocity gradient. (See first t e rm on right side of eq. (4).) A l l  of the turbulence com
ponents must then decay. 

By contrast ,  for  Ri  = - 1  (buoyancy forces  destabilizing), all components of the tur
bulent energy decay for a while and then begin t o  increase without limit as t ime becomes 
-large. This  increase evidently occurs  because the vertical  buoyancy forces  excite the 
ug-component of the turbulence and replenish the energy being drained out of it. 

It might seem surpris ing that all components of the turbulence continue to increase 
with t ime rather  than level off. There are no boundaries on the flow considered he re  
however, so  that the effective Reynolds number and Rayleigh number of the mean flow 
are infinite. A s  the scale  o r  mixing length of the turbulence continues to  grow, the 
eddies encounter larger  and larger  velocity and temperature differences, so  that the ef
fective driving forces on the turbulence continue to grow. 

= mComparison of figures l(a) and (b) shows, as expected, that for ~ r )(all wave 
numbers present), the components of the initial energy a r e  infinite, whereas for K La) = 1 

they have a finite value. The turbulent shear  s t r e s s  -u3u1 starts at zero  on both plots 
since the turbulent shear  s t r e s s  for isotropic turbulence is zero.  For  the case  ofK F )= 00, however, the value of -u3u1 jumps to  infinity in an infinitely short  t ime and 
then decreases .  For  K La) = 1 ,  (-5)first increases  steadily and then either decreases  

(Ri = 0) or  continues to  increase (Ri = -1) .  
T o  give an idea of the distribution of the turbulent energy with wave number, energy 

spectra  (spectra of z)
1 1  

a r e  plotted in figure 2 for K (0a) = m and R i  = 0 and -1. For 
t(a) = 0, qii is proportional to K 

4 (eq. (10)). A s  t ime increases,  the spectra  move to 
the smaller  wave number regions; that is, the scale  of the turbulence grows indefinitely 
large with time, since the fluid is unbounded. 

Thus far we have been considering the effect of buoyancy on a shear-flow turbulence. 
Next we want to consider the related problem of the effect of imposing a mean shear  on 
turbulence that is buoyancy-controlled. For doing this i t  is convenient to  use  the param-
e ters  u1?@) , t@) K @ )  and T@),0 ’  TCb), which have been made dimensionless by using’ 
quantities related to  the buoyancy (see figs. 3 and 4). The  parameters  used in figure 1 
were, on the other hand, nondimensionalized by using quantities related to  the shear .  

The effects of s h s r  on buoyancy-controlled turbulence are illustrated in figure 3 
and 4, where 2(b) , ~ 2 @ )  and -@) a r e  plotted against t@)for  several  values ofui 
Richardson number and K~b). For the case  of no shear  (Ri = -m) the resul ts  were  ob

tained from the integrated equations in reference 5. All components of the turbulent 
energy, as well as the temperature  fluctuations and the temperature-velocity corre
lations, increase as t@) becomes large. This  occurs  even when shear  is absent and the 
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.O2O [ Dimensionless t ime, 
= (dUl/dx31(t - to) 

(b) Richardson number, R i  = -1. 

Figure 2. -Var ia t ion with t i m n f  turbulent  
energy spectra (spectra of uiui l .  Prandtl n u m 
ber,  0.7. 

8 




Richardson 
number,  

,001 I 	 1 1 - I I I 1 I 

(a) Dimensionless i n i t i a l  wave number. 


(b) Dimensionless i n i t i a l  wave number, 

Figure 3. -Effect of un i fo rm shear o n  variat ion 
wi th  t ime of weak turbulence i n  flow wi th  
destabiliziny buoyancy. Prandtl  number,  0. 7. 
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Richardson 

-_ _  -(b)
Tu3 

f o o l  I I I I I I 
(a) Dimensionless in i t ia l  wave number,  

.001 J 
0 1 2 3 4 5 

(b) Dimensionless i n i t i a l  wave number,  

Figure 4. - Effect of u n i f o r m  shear o n  var ia
t ion  w i t h  t ime of temperature f luctuat ions 
and temperature-velocity correlat ions in 
flow w i th  destabi l izing buoyancy. Prandt l  
number,  0.7. 
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turbulence is completely controlled by the destabilizing buoyancy forces  (Ri = -m). 

Although all turbulent energy components can increase with t ime when shear  is absent, 
the component in the direction of the buoyancy forces is, in that case,  a t  least  an  order  
of magnitude greater  than the other components. On the other hand, when both buoyancy 
and shear  a r e  present, a l l  components can be of the same  order  of magnitude. 

Loeffler has recently considered the effect of a gradient in electric charge and an 
applied electric field on homogeneous turbulence (ref. 6). That problem is analogous 
to the present one for the case  when no shear  is present and the Prandtl number 
is infinite. It was found that the turbulent energy increases  without limit as t ime in
creases ,  when the electric field is in the direction of increasing charge density. For 

large t imes the turbulent energy was proportional to  (exp t (b))/(t (b))3. 

A s  the shear  increases  (as Ri goes from --co to -2) ,  the turbulent activity in 
general  increases ,  at  least  at  the ear l ier  t imes.  The shear  does not seem to affect 
7 or  3 at  the smal le r  t imes when ~ t )g(b) T@) = 1, however. At larger  t imes,  although 
- 

2 2u1 and u2 increase with increasing shear ,  u3, T2 , and all decrease with increas2 
ing shear .  These decreases  appear to  be related t o  the fact that at large t imes  the-
presence of the shear  causes  energy to be drained out of the u23 component (as dis-
cussed ear l ier) ,  and thus out of 7u and T~ (see eqs. (5) and (6)).3 

CONCLUDING REMARKS 

Although weak homogeneous turbulence with a uniform shear  ultimately decays with 
t ime, the presence of destabilizing buoyancy forces  in the direction of the mean velocity 
gradient prevents that decay. In that case  the buoyancy forces replenish the energy 
being drained out of the component of the turbulence in the direction of the mean velocity 
gradient, and the turbulent energy increases without limit as t ime increases.  Appar
ently the energy can increase without limit because the effective Reynolds and Rayleigh 
numbers are infinite in an unbounded fluid. A s  the scale  o r  mixing length of the turbu
lence continues to grow, the eddies encounter larger  and larger  velocity and tempera
tu re  differences, s o  that the effective driving forces on the turbulence continue to grow. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 6 ,  1970, 
129-0 1. 
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APPENDIX 

vertical  velocity gradient, 

vertical  temperature  gradient, 

W d x 3  

vertical  body force/unit mass  
in -x3 -direction (gravitational 
force/unit mass) ,  -g3 

gi  body force component/unit mass  

g3 ver t ical  body force/unit mass  

JO constant that depends on initial 
conditions 

Pr Prandtl number, V / C Y  

P pressure  

Pg d T / k 3
Ri  Richardson number, 

(dul/dx3)2 

1 ' 7  'i vector between points P and 
P' 

T mean temperature  

t t ime 

initial t ime 

ui mean velocity component 

ui fluctuating velocity component 

X.
1 

space coordinate 

CY thermal  diffusivity 

P expansion coefficient 

r defined by eq. (12)
j 

- SYMBOLS 

defined by eq. (8) 

defined by eq. (12) 

defined by eq. (9) 

Kronecker delta 

angular coordinates 

wave number component 

characterist ic initial wave 
number (see eq. (10)) 

kinematic viscosity 

density 

tem peratur e fluctuation 

temperature-velocity correlation 

defined by eq. (7) 

defined by eq. (12) 

"i 
A 

6 

6 ..
4 
8,cp 

Ki 

KO 

1, 


P 

7 

__7ui 

q i j  

+i j  
Subscripts: 

1 in flow direction 

3 in vertical  direction, which is 
direction of mean velocity 
gradient and buoyancy force 

Superscripts: 

' at point P' 

- average 

(a> parameter nondimensionaliz ed 
by quantities related to  shear  

(b) parameter nondimensionaliz ed by 
quantities related to buoyancy 
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